3.443 \(\int \cos ^9(c+d x) (a+b \tan ^2(c+d x))^2 \, dx\)

Optimal. Leaf size=114 \[ \frac{\left (6 a^2-6 a b+b^2\right ) \sin ^5(c+d x)}{5 d}+\frac{a^2 \sin (c+d x)}{d}+\frac{(a-b)^2 \sin ^9(c+d x)}{9 d}-\frac{2 (a-b) (2 a-b) \sin ^7(c+d x)}{7 d}-\frac{2 a (2 a-b) \sin ^3(c+d x)}{3 d} \]

[Out]

(a^2*Sin[c + d*x])/d - (2*a*(2*a - b)*Sin[c + d*x]^3)/(3*d) + ((6*a^2 - 6*a*b + b^2)*Sin[c + d*x]^5)/(5*d) - (
2*(a - b)*(2*a - b)*Sin[c + d*x]^7)/(7*d) + ((a - b)^2*Sin[c + d*x]^9)/(9*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0989362, antiderivative size = 114, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {3676, 373} \[ \frac{\left (6 a^2-6 a b+b^2\right ) \sin ^5(c+d x)}{5 d}+\frac{a^2 \sin (c+d x)}{d}+\frac{(a-b)^2 \sin ^9(c+d x)}{9 d}-\frac{2 (a-b) (2 a-b) \sin ^7(c+d x)}{7 d}-\frac{2 a (2 a-b) \sin ^3(c+d x)}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^9*(a + b*Tan[c + d*x]^2)^2,x]

[Out]

(a^2*Sin[c + d*x])/d - (2*a*(2*a - b)*Sin[c + d*x]^3)/(3*d) + ((6*a^2 - 6*a*b + b^2)*Sin[c + d*x]^5)/(5*d) - (
2*(a - b)*(2*a - b)*Sin[c + d*x]^7)/(7*d) + ((a - b)^2*Sin[c + d*x]^9)/(9*d)

Rule 3676

Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_.), x_Symbol] :> With[{ff = F
reeFactors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[ExpandToSum[b*(ff*x)^n + a*(1 - ff^2*x^2)^(n/2), x]^p/(1 -
ff^2*x^2)^((m + n*p + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] &&
IntegerQ[n/2] && IntegerQ[p]

Rule 373

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n
)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, 0] && IGtQ[q, 0]

Rubi steps

\begin{align*} \int \cos ^9(c+d x) \left (a+b \tan ^2(c+d x)\right )^2 \, dx &=\frac{\operatorname{Subst}\left (\int \left (1-x^2\right )^2 \left (a-(a-b) x^2\right )^2 \, dx,x,\sin (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \left (a^2-2 a (2 a-b) x^2+\left (6 a^2-6 a b+b^2\right ) x^4-2 \left (2 a^2-3 a b+b^2\right ) x^6+(a-b)^2 x^8\right ) \, dx,x,\sin (c+d x)\right )}{d}\\ &=\frac{a^2 \sin (c+d x)}{d}-\frac{2 a (2 a-b) \sin ^3(c+d x)}{3 d}+\frac{\left (6 a^2-6 a b+b^2\right ) \sin ^5(c+d x)}{5 d}-\frac{2 (a-b) (2 a-b) \sin ^7(c+d x)}{7 d}+\frac{(a-b)^2 \sin ^9(c+d x)}{9 d}\\ \end{align*}

Mathematica [A]  time = 0.608363, size = 116, normalized size = 1.02 \[ \frac{630 \left (63 a^2+14 a b+3 b^2\right ) \sin (c+d x)+420 \left (21 a^2-b^2\right ) \sin (3 (c+d x))+252 \left (9 a^2-4 a b-b^2\right ) \sin (5 (c+d x))+35 (a-b)^2 \sin (9 (c+d x))+45 (9 a-b) (a-b) \sin (7 (c+d x))}{80640 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^9*(a + b*Tan[c + d*x]^2)^2,x]

[Out]

(630*(63*a^2 + 14*a*b + 3*b^2)*Sin[c + d*x] + 420*(21*a^2 - b^2)*Sin[3*(c + d*x)] + 252*(9*a^2 - 4*a*b - b^2)*
Sin[5*(c + d*x)] + 45*(a - b)*(9*a - b)*Sin[7*(c + d*x)] + 35*(a - b)^2*Sin[9*(c + d*x)])/(80640*d)

________________________________________________________________________________________

Maple [A]  time = 0.093, size = 183, normalized size = 1.6 \begin{align*}{\frac{1}{d} \left ({b}^{2} \left ( -{\frac{ \left ( \sin \left ( dx+c \right ) \right ) ^{3} \left ( \cos \left ( dx+c \right ) \right ) ^{6}}{9}}-{\frac{\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{6}}{21}}+{\frac{\sin \left ( dx+c \right ) }{105} \left ({\frac{8}{3}}+ \left ( \cos \left ( dx+c \right ) \right ) ^{4}+{\frac{4\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}}{3}} \right ) } \right ) +2\,ab \left ( -1/9\,\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{8}+{\frac{\sin \left ( dx+c \right ) }{63} \left ({\frac{16}{5}}+ \left ( \cos \left ( dx+c \right ) \right ) ^{6}+6/5\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}+8/5\, \left ( \cos \left ( dx+c \right ) \right ) ^{2} \right ) } \right ) +{\frac{{a}^{2}\sin \left ( dx+c \right ) }{9} \left ({\frac{128}{35}}+ \left ( \cos \left ( dx+c \right ) \right ) ^{8}+{\frac{8\, \left ( \cos \left ( dx+c \right ) \right ) ^{6}}{7}}+{\frac{48\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}}{35}}+{\frac{64\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}}{35}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^9*(a+b*tan(d*x+c)^2)^2,x)

[Out]

1/d*(b^2*(-1/9*sin(d*x+c)^3*cos(d*x+c)^6-1/21*sin(d*x+c)*cos(d*x+c)^6+1/105*(8/3+cos(d*x+c)^4+4/3*cos(d*x+c)^2
)*sin(d*x+c))+2*a*b*(-1/9*sin(d*x+c)*cos(d*x+c)^8+1/63*(16/5+cos(d*x+c)^6+6/5*cos(d*x+c)^4+8/5*cos(d*x+c)^2)*s
in(d*x+c))+1/9*a^2*(128/35+cos(d*x+c)^8+8/7*cos(d*x+c)^6+48/35*cos(d*x+c)^4+64/35*cos(d*x+c)^2)*sin(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.12922, size = 140, normalized size = 1.23 \begin{align*} \frac{35 \,{\left (a^{2} - 2 \, a b + b^{2}\right )} \sin \left (d x + c\right )^{9} - 90 \,{\left (2 \, a^{2} - 3 \, a b + b^{2}\right )} \sin \left (d x + c\right )^{7} + 63 \,{\left (6 \, a^{2} - 6 \, a b + b^{2}\right )} \sin \left (d x + c\right )^{5} - 210 \,{\left (2 \, a^{2} - a b\right )} \sin \left (d x + c\right )^{3} + 315 \, a^{2} \sin \left (d x + c\right )}{315 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^9*(a+b*tan(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

1/315*(35*(a^2 - 2*a*b + b^2)*sin(d*x + c)^9 - 90*(2*a^2 - 3*a*b + b^2)*sin(d*x + c)^7 + 63*(6*a^2 - 6*a*b + b
^2)*sin(d*x + c)^5 - 210*(2*a^2 - a*b)*sin(d*x + c)^3 + 315*a^2*sin(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 1.51343, size = 290, normalized size = 2.54 \begin{align*} \frac{{\left (35 \,{\left (a^{2} - 2 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{8} + 10 \,{\left (4 \, a^{2} + a b - 5 \, b^{2}\right )} \cos \left (d x + c\right )^{6} + 3 \,{\left (16 \, a^{2} + 4 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{4} + 4 \,{\left (16 \, a^{2} + 4 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{2} + 128 \, a^{2} + 32 \, a b + 8 \, b^{2}\right )} \sin \left (d x + c\right )}{315 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^9*(a+b*tan(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

1/315*(35*(a^2 - 2*a*b + b^2)*cos(d*x + c)^8 + 10*(4*a^2 + a*b - 5*b^2)*cos(d*x + c)^6 + 3*(16*a^2 + 4*a*b + b
^2)*cos(d*x + c)^4 + 4*(16*a^2 + 4*a*b + b^2)*cos(d*x + c)^2 + 128*a^2 + 32*a*b + 8*b^2)*sin(d*x + c)/d

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**9*(a+b*tan(d*x+c)**2)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^9*(a+b*tan(d*x+c)^2)^2,x, algorithm="giac")

[Out]

Timed out